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This study presents overall failure criteria for an infinite anisotropic solid containing
multiple flaws subjected to a set of uniform applied loads. Based on the inclusion method,
flaws are treated as elliptical inclusions where their elastic moduli are considered to be
zero. The explicit expression of elastic fields is obtained for a cubic crystal multiply flawed
solid through the use of the Mori-Tanaka mean field theory. The resulting expression is
further utilized to find an interaction energy function between the applied loads and flaws.
With this energy function, the energy release rates and critical stresses are acquired
separately in a closed form for Mode I, II, and III. The closed forms for energy release rates
and critical stresses reveal that they are a function of the aspect ratio and the volume
fraction of flaws, the modes of the loading, and the material properties. As an illustrated
numerical example, the energy release rates and the critical stresses that vary with both the
aspect ratio and the volume fraction of the flaws in a cubic crystal material are
discussed. C© 1999 Kluwer Academic Publishers

1. Introduction
Historically, researches in flawed materials have been
focused on the analyses of the materials containing a
single flaw. However, it has been evident that most ma-
terials contain not a single flaw but multiple flaws, and
often the flaw density is very high in some materials.
Therefore, the related investigations about the averag-
ing elastic response and overall fracture criterion of
multiply flawed materials are needed to obtain the ef-
fective fracture criteria.

Many researchers have developed the fracture crite-
ria for single crack problems. Two-dimensional crite-
rion is originally proposed by Griffith [1]. Followed the
Griffith’s work, Sack [2] and Sneddon [3] had obtained
the criteria for penny shaped cracked body for three-
dimensional problems. Kassir and Sih [4] had investi-
gated critical stresses and surface energy of flat ellip-
soidal cracked materials. The formal derivation based
on micromechanics for the single crack problem has
been given by Willis [5], Barnett and Asaro [6], Mura
and Lin [7], Mura and Cheng [8], Huang and Liu [9]
among others, further efforts, however, must be ex-
pended to perform a failure study of a solid containing
multiple cracks or flaws subjected to applied loading in
mode I, II, and III. Accomplishing such a task would
allow us to fully exploit the advantages of materials.
Therefore, in this study, we study the closed form of
the energy release rates and the critical stresses for el-
liptical flaws involved in an infinite solid subjected to
one of three kinds of applied loading.

The objective of this work is to develop an analyt-
ical and simple approach for determining the failure
criterion for many flaws in a three-dimensional, in-
finitely extended, anisotropic medium. To this end, this
article has focused primarily on the following issues.
First, the inclusion method [10] is developed to inves-
tigate the elastic fields around an elliptical inclusion
in a three-dimensional anisotropic solid. Secondly, the
results are extended to the multiply flawed problem by
means of the equivalent inclusion method [11]. By us-
ing the Mori-Tanaka [12] mean field theory and taking
the elastic moduli of the inclusion as zero, explicit so-
lutions for equivalent eigenstrains [10] (or stress-free
transformation strains [11]) are obtained for three load-
ing modes: a uniaxial tension, an in-plane shear, and
an out-plane shear. Then, the energy release rates and
the critical stresses of the Griffith fracture criterion are
presented in closed forms for multiply flawed materi-
als subjected to these three loading modes separately.
Finally, as an illustrated numerical example, the energy
release rates and the critical stresses vary with both as-
pect ratio and the volume fraction of the flaws in a cubic
crystal medium are discussed.

2. The inclusion method
Consider an infinitely extended solidD containing an
ellipsoidal inclusionÄ whose elastic moduliCi jmn are
the same as the matrix. Here the shape of inclusion is
taken as ellipsoid that is capable of treating composite
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reinforcement geometry ranging from the thin flake to
continuous fiber reinforcement. Letε∗ab be eigenstrain
(or stress-free transformation strain) in the inclusionÄ,
and zero in the matrixD−Ä. When the eigenstrain in
the inclusion are uniform, the induced strainεmn in Ä
can be expressed as

εmn = Smnabε
∗
ab, (1)

where Smnab is the well-known Eshelby tensor [11]
for elastic ellipsoidal inclusion problems. In this work,
a flaw will be modeled as an elliptical (a3→∞,
a2/a1=a) inclusion oriented with its generatrix par-
allel to x3 axis. Components of the Eshelby tensors for
elliptical inclusions in a cubic crystal material are given
as [13]:

S1111= (2+ 3a)C11+ aC12

2(1+ a)2C11
,

S2222= (3a+ 2a2)C11+ aC12

2(1+ a)2C11
,

S1122= −aC11+ (2+ a)C12

2(1+ a)2C11
,

S2211= −aC11+ (a+ 2a2)C12

2(1+ a)2C11
,

S1133= C12

(1+ a)C11
, S2233= aC12

(1+ a)C11
, (2)

S1212= S1221= S2112= S2121

= (1+ a+ a2)C11− aC12

2(1+ a)2C11
,

S1313= S1331= S3113= S3131= 1

2(1+ a)
,

S2323= S2332= S3223= S3232= a

2(1+ a)
.

Then, the corresponding stress inside the inclusion can
be obtained as

σi j = Ci jmn(Smnab− Imnab)ε
∗
ab, (3)

whereImnabrepresents the fourth order identity tensors,
i.e.,

Imnab= 1

2
(δmaδnb+ δmbδna) (4)

with δma being the Kronecker’s delta

3. Overall elastic fields
So far it has been assumed that both the matrix and
the inclusions have the same elastic constants. Now
turn to the case of an ellipsoidal inhomogeneity, where
matrix and inclusions have different elastic constants.
To deal with such a composite, the equivalent inclusion
method of Eshelby incorporated the Mori-Tanaka mean
field theory will be employed to find the overall elas-
tic fields of the composite. Consider a sufficiently
large two-phase composite contains same shaped, ran-
domly distributed, and oriented ellipsoidal inhomo-
geneitiesÄ= (Ä1+Ä2+ · · ·+ÄN) with elastic mod-
uli C∗i jmn and volume fraction f . The surrounding

matrix is denoted byD−Ä and has elastic constants
Ci jmn. Let the composite be subjected to a far-field
stressσ 0

i j on the boundary. In the absence of the inhomo-
geneities, the strainε∗mn distributes uniformly. The exis-
tence of the inhomogeneityÄk provides disturbance in
local fields of both the matrix and thekth inhomogene-
ity. The averages of these quantities are expressed by
〈σm

i j 〉 and〈σÄi j 〉 for the matrix and thekth inhomogene-
ity respectively. Hereafter the curly bracket〈 〉 over a
field variable denotes its value obtained by volume av-
eraging over the entire composite domainD, and the
superscripts ‘m’ and ‘Ä’ denote quantities in the matrix
and the inhomogeneity respectively.

Since the volume average of the disturbance portion
of the stress vanishes, i.e.,∫

D
σi j dx = 0, (5)

we have

(1− f )
〈
σm

i j

〉+ f
〈
σÄi j
〉 = 0. (6)

The average disturbed stress in the matrix and thekth
inhomogeneity can respectively be written as〈

σm
i j

〉 = Ci jmn
〈
εm

mn

〉
in D −Ä, (7)〈

σ
Äk

i j

〉 = C∗i jmn

(〈
εm

mn

〉+ 〈εmn〉
)

in Äk, (8)

where 〈εm
mn〉 is the average strain,〈εmn〉 the average

disturbance of the otherwise uniform strain inÄk. Since
all inhomogeneities are of the same shape with the same
material properties, the average value over is identical
with that overÄ, namely,〈σÄk

i j 〉 = 〈σÄi j 〉.
When the composite is subjected to the uniform far-

field applied loadσ 0
i j , the average stress in the inhomo-

geneities can be expressed as

σ 0
i j +

〈
σÄi j
〉 = C∗i jmn

(
ε0

mn+
〈
εm

mn

〉+ εmn
)
, (9)

In the derivation of the equation above,〈εmn〉 = εmn in
Ä has been used since the applied load is uniform and
the inhomogeneity is ellipsoidal [10].

By means of the equivalent inclusion method [11],
the stress in the inhomogeneity can be simulated by
those in an equivalent inclusion with the elastic moduli
of the matrix and a fictitious eigenstrainε∗mn, which will
be determined in the subsequent development. There-
fore, Equation 9 can be written as

σ 0
i j +

〈
σÄi j
〉 = C∗i jmn

(
ε0

mn+
〈
εm

mn

〉+ εmn
)

= Ci jmn
(
ε0

mn+
〈
εm

mn

〉+ εmn− ε∗mn

)
, (10)

where the disturbed fieldεmn can be related to the fic-
titious eigenfieldε∗mn as shown Equation 1.

Then, the average disturbance of stress in the inho-
mogeneity can be written by substituting Equation 1
into Equation 8 as〈
σÄi j
〉 = Ci jmn

〈
εm

mn

〉+ Li jmn(Smnab− Imnab)ε
∗
ab, (11)

Combining Equations 6, 8 and 11 leads to〈
εm

mn

〉 = − f (Smnab− Imnab)ε
∗
ab. (12)
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Substitution of Equation 12 into Equation 7 and Equa-
tion 9, respectively, yields〈

σm
i j

〉 = − f Ci jmn(Smnab− Imnab)ε
∗
ab, (13)〈

σÄi j
〉 = (1− f )Ci jmn(Smnab− Imnab)ε

∗
ab. (14)

The equivalent eigenstrainε∗ab serves as the cornerstone
in this work as it is the key ingredient necessary for the
solution of flaw problems. Substituting Equation 12 into
the equivalency Equation 10 as can solve it

ε∗ab = −U−1
abi j

(
C∗i jmn − Ci jmn

)
ε0

mn, (15)

whereU−1
abi j is the inverse ofUi jab given by

Ui jab =
(
C∗i jmn − Ci jmnn

)
Smnab+ Ci jab. (16)

By inspection of the Equation 15 it is seen that to solve
the equivalent eigenstrain analytically, the inverse of
the fourth-order tensor has to be carried out before pro-
ceeding any further. It is noted that, in mapping a tensor
into a matrix through the Voigt two-index notation, care
should be taken in accounting for the shear strain terms,
i.e., the factor of two. Thus, the inversion of a fourth-
order tensor is not a standard matrix manipulation. A
special scheme for the fourth-order inversion must be
developed which is briefly outlined here. First, with the
notation, a 6× 6 matrix is constructed for the given
fourth-order tensor. The matrix element in columns 4
to 6 is two times their corresponding tensor compo-
nent. The 6× 6 matrix is inverted and is then used to
map the corresponding inverse tensor. In mapping the
matrix back to the corresponding tensor, each element
in columns 4 to 6 is divided by 2 to obtain the ten-
sor element. With this scheme,U−1

abi j in Equation 16
can be evaluated, followed by the results of the equiv-
alent eigenfieldsε∗ab in Equation 15 for a flaw in a cu-
bic crystal solid acted on by a set of uniform applied
loads. Suppose a flaw is considered the elliptical inho-
mogeneity where its elastic moduli vanish, complete
explicit expressions for the equivalent eigenstrain have
been obtained and tabulated below.

For the in-plane shear stressσ 0
21 applied to the mul-

tiply flawed solid only:

ε∗12 =
(1+ a)2C11σ

0
21

a(1− f )
(
C2

11− C2
12

) (17)

For the tensile stressσ 0
22 applied to the multiply flawed

solid only:

ε∗11 =
[
C2

11(C11+ C12)− (3C11− C12)C2
12

]
σ 0

22

(1− f )
(
C2

11− C2
12

)[
2C2

12− (C11+ C12)C11
] ,

(18)

ε∗22 =
[
(C11+ 4aC11+ C12)C2

12− (1+ 2a)(C11+ C12)C2
11

]
σ 0

22

(1− f )
(
C2

11− C2
12

)[
2C2

12+ (C11+ C12)C11
] , (19)

ε∗33 =
C12σ

0
22

(1− f )
[
2C2

12− (C11+ C12)C11
] . (20)

For the anti-plane shear stressσ 0
23 applied to the multi-

ply flawed solid:

ε∗23 =
(1+ a)σ 0

23

2(1− f )C44
. (21)

The overall strain field, denoted by〈εC
mn〉, of the com-

posite can then be obtained as the weighted average of
that over each phase:

〈
εC

mn

〉 = 1

V

[ ∫
D−Ä

(
ε0

mn+
〈
εm

mn

〉)
dx

+
∫
Ä

(
ε0

mn+
〈
εÄmn

〉)
dx

]
. (22)

whereV denotes the volume of the entire composite.
Substituting Equations 14 and 15 into Equation 22 re-
sults in the following equation:〈

ε0
mn

〉 = C−1
mni jσ

0
i j + f ε∗mn (23)

Then, the corresponding overall stress of the composite
are readily derived as〈

σC
i j

〉 = σ 0
i j − f Ci jmnε

∗
mn (24)

4. Energy release rate
To determine the flaw extension force, a calculation
must be made of the change of total potential energy
when the flaw is extended by the amount1a1. When the
far-field surface tractionσ 0

i j ni is applied on the bound-
ary of the multiply flawed material, the energy release
rateG is defined as the change of the potential energy
of the material,1W. ForN infinitesimal flaws to grow,
the energy release rate per unit thickness is defined as

G = − ∂

∂a1

N∑
i =1

(1W)i (25)

where

1W = 1

2

∫
D

(
σ 0

i j + σi j
)(

u0
j,i + u j,i

)
dD

−
∫
|D|

(
σ 0

i j ni
)(

u0
j + u j

)
dS

−
[

1

2

∫
D
σ 0

i j u
0
j,i dD −

∫
|D|

(
σ 0

i j ni
)
u0

j dS

]
,

(26)

with |D| denoting the boundary of the flawed material
D. It is observed that1W represents the interaction
energy between the loading and flaw extension forces.

The energy release rate as defined in Equation 25 is par-
ticular convenient for calculation since the interaction
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energy can be expressed only in term of the applied
loads and the equivalent eigenstrainε∗j i as [10]

1W = −1

2

∫
Ä

σ 0
i j ε
∗
j i dx = −1

2
(2πa1a2)σ 0

i j ε
∗
j i , (27)

where 2πa1a2 is the volume per unit thickness of an
elliptical flaw.

Substitutingε∗j i listed in Equations 17–21 into Equa-
tion 25 with Equation 27 results in three modes of en-
ergy release rate explicitly. For Mode I:

GI = 4(a1+ a2)C11πσ
02

21

(1− f )
(
C2

11− C2
12

) , (28)

and for Mode II:

GII =
{
(4a1+ a2)(C11+ C12)C2

11− [8a1C11+ a2(C11+ C12)]C2
12

}
πσ 02

22

(1− f )
(
C2

11− C2
12

)[
(C11+ C12)C11− 2C2

12

] , (29)

and for Mode III:

GIII = 2(a1+ a2)πσ 02

23

(1− f )C44
. (30)

Equations 28–30 are the closed forms of the energy
release rate forN elliptical flaws embedded in an in-
finite solid under distinct types of mechanical loading.
These forms are a function of the aspect ratio and the
volume fraction of flaws, the type of the loading, and
the material properties.

As an illustrated example to emphasize the physical
dimension of these closed forms for the energy release
rate, elliptical flaws in an iron are considered. The iron
is a cubic crystal material with the following material
properties:

C11 = C22 = C33 = 242 Gpa,

C44 = C55 = C66 = 146.5 Gpa, (31)

C12 = C13 = C23 = 112 Gpa,

Fig. 1 depicts the numerical demonstration for the clo-
sed forms of the energy release rates in Equa-
tions 28–30, whereGI , GII , andGIII are found to in-
crease with the volume fractionf of the flaws when
the aspect ratio of the flawa1/a2 = 100. HereGI and
GII are almost the same and larger thanGIII as the f
increases. Fig. 2 exhibits that the energy release rates
linearly increase with respect to the extension of the as-
pect ratio of the elliptical flaw atf = 2%. These results
reveal that the flaws are more difficult to be ruptured
in Mode III than other modes as the volume fraction or
the aspect ratio of the flaws increases.

5. Critical failure stresses
The critical stress forN flaws to be distended under dis-
tinct mechanical loading can be determined according

to the Griffith [1] criterion:

∂

∂a1

N∑
i =1

(1W + 2πa1a2γ )i = 0, (32)

where γ denotes the surface energy density of the
flawed material. Herein, the value ofγ is selected as
1 Gpa for numerical simulation. Substitutingε∗j i given
by Equations 17–21 into condition 25 leads to critical
stresses

σ c
21 =

√
(1− f )γa2

(
C2

11− C2
12

)
2(a1+ a2)C11

(33)

Figure 1 Energy release rates against withf whena1/a2 = 100.

Figure 2 Energy release rates againsta1/a2 when f = 2%.
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for Mode I, and

σ c
22 =

√
2(1− f )γa2

(
C2

11− C2
12

)[
(C11+ C12)C11− 2C2

12

]
[8a1C11+ a2(C11+ C12)]

[
C2

12− 4(a1+ a2)(C11+ C12)C2
11

] (34)

for Mode II, and

σ c
23 =

√
2(1− f )γa2C44

2a1+ a2
(35)

for Mode III.
The numerical demonstration with the iron, whose

elastic constants are given in Equation 31, for the closed
forms of the critical stresses in Equations 33–35 is il-
lustrated in Figs 3–4. As clearly shown in these figures,
the critical stresses are strongly dependent on the as-
pect ratioa1/a2 and the volume fractionf of the flaws.

Figure 3 Critical stresses againstf whena1/a2 = 100.

Figure 4 Critical stresses againsta1/a2 when f = 2%.

Fig. 3 displays the decreasing critical stresses as vol-
ume fractionf increases ata1/a2 = 100. Fig. 4 shows
that the critical stresses are monotonously decreased
with respect to the extension of aspect ratio of the flaws
at f = 2%. Nevertheless,σ c

21 andσ c
22 are nearly equal,

and the values ofσ c
23 are always less than those ofσ c

21
andσ c

22 as the range of the aspect ratio or the volume
fraction of flaws increases. These indicate that the flaws
are easier to be ruptured in Mode I and Mode II than
Mode III as the flaw volume fraction or the flaw aspect
ratio increases.

6. Summary
This study presents the fracture criterion in a closed
form for an infinite anisotropic solid containing multi-
ply elliptical flaws separately subjected to three modes
of applied loading. The energy release rates are intro-
duced to quantitatively determine the flaws’ extension
force. In addition, the critical stresses are employed to
forecast the trade of the flaw propagation. The closed
forms for energy release rate and critical stresses indi-
cate that they are functions of the aspect ratio and the
volume fraction of the flaws, the modes of the loading,
and the material properties. According to our results
for an iron, energy release rates increase with the vol-
ume fraction of flaws, in whichGIII is less thanGI and
GII as the volume fractionf of flaws increases; crit-
ical stresses decrease asf increases in whichσ c

23 is
larger thanσ c

21 andσ c
22. Numerical demonstration also

illustrates that the energy release rates linearly increase
with respect to the extension of the aspect ratio of flaws
at a fixed volume fraction, while critical stresses are
monotonously decreased. These reveal that the flaws in
an iron are more difficult to be ruptured in Mode III
than other modes as the volume fraction or the aspect
ratio of flaw increases. Finally, it is noted that the for-
mulation presented in the present paper is applicable
not only to the flaws in a cubic crystal solid but also to
any elastic anisotropic elliptical flaw problems.
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