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This study presents overall failure criteria for an infinite anisotropic solid containing
multiple flaws subjected to a set of uniform applied loads. Based on the inclusion method,
flaws are treated as elliptical inclusions where their elastic moduli are considered to be
zero. The explicit expression of elastic fields is obtained for a cubic crystal multiply flawed
solid through the use of the Mori-Tanaka mean field theory. The resulting expression is
further utilized to find an interaction energy function between the applied loads and flaws.
With this energy function, the energy release rates and critical stresses are acquired
separately in a closed form for Mode |, I, and lll. The closed forms for energy release rates
and critical stresses reveal that they are a function of the aspect ratio and the volume
fraction of flaws, the modes of the loading, and the material properties. As an illustrated
numerical example, the energy release rates and the critical stresses that vary with both the
aspect ratio and the volume fraction of the flaws in a cubic crystal material are

discussed. © 1999 Kluwer Academic Publishers

1. Introduction The objective of this work is to develop an analyt-
Historically, researches in flawed materials have beercal and simple approach for determining the failure
focused on the analyses of the materials containing ariterion for many flaws in a three-dimensional, in-
single flaw. However, it has been evident that most mafinitely extended, anisotropic medium. To this end, this
terials contain not a single flaw but multiple flaws, andarticle has focused primarily on the following issues.
often the flaw density is very high in some materials.First, the inclusion method [10] is developed to inves-
Therefore, the related investigations about the averagigate the elastic fields around an elliptical inclusion
ing elastic response and overall fracture criterion ofin a three-dimensional anisotropic solid. Secondly, the
multiply flawed materials are needed to obtain the efresults are extended to the multiply flawed problem by
fective fracture criteria. means of the equivalent inclusion method [11]. By us-
Many researchers have developed the fracture criténg the Mori-Tanaka [12] mean field theory and taking
ria for single crack problems. Two-dimensional crite- the elastic moduli of the inclusion as zero, explicit so-
rion is originally proposed by Griffith [1]. Followed the lutions for equivalent eigenstrains [10] (or stress-free
Griffith's work, Sack [2] and Sneddon [3] had obtained transformation strains [11]) are obtained for three load-
the criteria for penny shaped cracked body for threeing modes: a uniaxial tension, an in-plane shear, and
dimensional problems. Kassir and Sih [4] had investi-an out-plane shear. Then, the energy release rates and
gated critical stresses and surface energy of flat ellipthe critical stresses of the Griffith fracture criterion are
soidal cracked materials. The formal derivation basegresented in closed forms for multiply flawed materi-
on micromechanics for the single crack problem hasals subjected to these three loading modes separately.
been given by Willis [5], Barnett and Asaro [6], Mura Finally, as an illustrated numerical example, the energy
and Lin [7], Mura and Cheng [8], Huang and Liu [9] release rates and the critical stresses vary with both as-
among others, further efforts, however, must be expectratio and the volume fraction of the flaws in a cubic
pended to perform a failure study of a solid containingcrystal medium are discussed.
multiple cracks or flaws subjected to applied loading in
mode I, Il, and Ill. Accomplishing such a task would
allow us to fully exploit the advantages of materials.2. The inclusion method
Therefore, in this study, we study the closed form ofConsider an infinitely extended soli@d containing an
the energy release rates and the critical stresses for eflipsoidal inclusior® whose elastic modu(Cijmn are
liptical flaws involved in an infinite solid subjected to the same as the matrix. Here the shape of inclusion is
one of three kinds of applied loading. taken as ellipsoid that is capable of treating composite
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reinforcement geometry ranging from the thin flake tomatrix is denoted byD — @ and has elastic constants
continuous fiber reinforcement. Lef, be eigenstrain  Cjjmn. Let the composite be subjected to a far-field
(or stress-free transformation strain) in the inclusiyn ~ stress:? on the boundary. Inthe absence of the inhomo-
and zero in the matri® — Q. When the eigenstrain in geneltles the straigf;, , distributes uniformly. The exis-
the inclusion are uniform, the induced strajp, in 2 tence of the inhomogeneityy provides disturbance in

can be expressed as local fields of both the matrix and thk¢h inhomogene-
— Sorae 1 ity. The averages of these quantities are expressed by
mn = SmnatFab: (1) (a{}“) and(oﬁZ) for the matrix and th&th inhomogene-

where Snhnab is the well-known Eshelby tensor [11] ity respectively. Hereafter the curly brackgtover a

for elastic ellipsoidal inclusion problems. In this work, field variable denotes its value obtained by volume av-
a flaw will be modeled as an ellipticabd — oo,  eraging over the entire composite domd&n and the
ap/a; = a) inclusion oriented with its generatrix par- superscriptsi’ and ‘Q’ denote quantities in the matrix
allel to x3 axis. Components of the Eshelby tensors forand the inhomogeneity respectively.

elliptical inclusions in a cubic crystal material are given ~ Since the volume average of the disturbance portion

as [13]: of the stress vanishes, i.e.,
(2+3a)Cy1 +aCy
Si111= / ij dx = 5
111 2(1+ a)2C11 o Oij (%)
82222 _ (3a + 2a2)C11 + a.C12 we have
2(1+ a)’Cny m o
Suze = 2(1+a)2Cyy The average disturbed stress in the matrix anckthe
—aCi + (a+ 23%)Cy inhomogeneity can respectively be written as
So11= ) .
21 2(1+a)2Cyy (o) = Cijmn(eMy) in D — €, (7)
Cio aCyo .
= =—— (2 C + (e in Q, 8
Si133 (1+aCu S233 (1+a)Cu (2) ( > |Jmn(< mn> ( mn)) k (8)
_ _ _ where (¢ ) is the average straingmn) the average
S212= Siz21 821212 121 disturbance of the otherwise uniform strairgip. Since
_ (@+a+a9)Cu—aCy allinhomogeneities are of the same shape with the same
2(1+ a)2Cy ’ material properties, the average value over is identical
1 with that over@, namely,(o;*) = (o)
Si313 = Si331 = S113= J131= 20+a) When the composite is subjected to the uniform far-

field applied Ioacb,o, the average stress in the inhomo-

a geneities can be expressed as

21+a)

S323= 332 = Sz = Soz0=

0 * m
oy + (oii Ct ( + (& +8mn)» 9)
Then, the corresponding stress inside the inclusion can N ( ! ) Hmn Emn ( mn)

be obtained as In the derivation of the equation abovegmn) = emnin
.  has been used since the applied load is uniform and
0ij = Cijmn(Snnab— Imnaap, (3)  the inhomogeneity is ellipsoidal [10].

By means of the equivalent inclusion method [11],
the stress in the inhomogeneity can be simulated by
those in an equivalent inclusion with the elastic moduli

1 of the matrix and a fictitious eigenstraiy,,, which will
Imnab = Q(ama‘sf‘b + dmbdna) 4)  be determined in the subsequent development. There-
fore, Equation 9 can be written as

wherel hhaprepresents the fourth order identity tensors,
ie.,

with &4 being the Kronecker's delta
Lo O'i(j) + <Gij > Cﬁ]mn( mn T (Emn) + €mn)

3. Overall elastic fields 0 - .

So far it has been assumed that both the matrix and = Cijmn(Emn + (Emn) + &mn — smn), (10)

the inclusions have the same elastic constants. Now

turn to the case of an ellipsoidal inhomogeneity, where[v:f[lhoeurs é?ee?]ﬁgrc;bed;;eﬁ“c;‘vﬁfg bjartle(lj?]tid to the fic-

matrix and inclusions have different elastic constants. Then. ?he average disturbancqe of strees in the inho-

To deal with such a composite, the equivalent inclusion ogeneity can begwritten by substituting Equation 1

method of Eshelby incorporated the Mori-Tanaka mearmtogE uaéc:on 8 as y 9 Eq

field theory will be employed to find the overall elas- q

tic fields of the composite. Consider a sufficiently —C L o 11

large two-phase composite contains same shaped, rag I mn(efin] + Lijmn(Snnab — Imnanez. (1)

domly distributed, and oriented ellipsoidal inhomo- Combining Equations 6, 8 and 11 leads to

geneitiex2 = (21 + Q2 + - - - + Q) with elastic mod-

uli Ci,, and volume fractionf. The surrounding (emn) = — T (Snnab— Imnaneap. (12)
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Substitution of Equation 12 into Equation 7 and Equa-For the anti-plane shear stres% applied to the multi-

tion 9, respectively, yields ply flawed solid:
<Uirjn) = — fCijmn(Snnab— Imnaneap, (13) . a+ a)a§3 21)
8= 50 e
(Cfisjz> =1- f)Cijmn(Smnab— |mnah)3;b- (14) 2(1= 1)Cas

The equivalent eigenstrait), serves as the cornerstone The overall strain field, denoted 4y, of the com-

in this work as it is the key ingredient necessary for theposite can then be obtained as the weighted average of
solution of flaw problems. Substituting Equation 12 into that over each phase:

the equivalency Equation 10 as can solve it

1
cC\_ — 0 m
ey = _U;blij (Cﬁmn — Cijmn)gf')nnv (15) (5mn> =V |:/D_Q (Smn + <5mn>) dx
whereUa‘,Dlij is the inverse oU;;ap given by + / (00 + (£2) dx]. (22)
Q
Uijab = (Cfjmn — Cijmnn) Snnab+ Cijab- ~ (16)  whereV denotes the volume of the entire composite.

By inspection of the Equation 15 it is seen that to solveSUbStItUtIng Equations 14 and 15 into Equation 22 re-

the equivalent eigenstrain analytically, the inverse ofSUItS in the following equation:

the fourth-order tensor has to be carried out before pro- (69 = Crlio + fer (23)
ceeding any further. Itis noted that, in mapping a tensor mn mnij= mn

into a matrix through the Voigt two-index notation, care then the corresponding overall stress of the composite
should be taken in accounting for the shear strain terms, .o readily derived as

i.e., the factor of two. Thus, the inversion of a fourth-

order tensor is not a standard matrix manipulation. A (afj?) = gi(j) — fCijmn&fan (24)
special scheme for the fourth-order inversion must be

developed which is briefly outlined here. First, with the

notation, a 6x 6 matrix is constructed for the given 4. Energy release rate

fourth-order tensor. The matrix element in columns 4To determine the flaw extension force, a calculation
to 6 is two times their corresponding tensor compo-must be made of the change of total potential energy
nent. The 6x 6 matrix is inverted and is then used to when the flaw is extended by the amowa; . When the
map the corresponding inverse tensor. In mapping théar-field surface traction®n; is applied on the bound-
matrix back to the corresponding tensor, each elemerdry of the multiply flawed material, the energy release
in columns 4 to 6 is divided by 2 to obtain the ten- rateG is defined as the change of the potential energy
sor element. With this schemU,;blij in Equation 16  of the material AW. ForN infinitesimal flaws to grow,
can be evaluated, followed by the results of the equivthe energy release rate per unit thickness is defined as
alent eigenfields, in Equation 15 for a flaw in a cu-
bic crystal solid acted on by a set of uniform applied 9

loads. Suppose a flaw is considered the elliptical inho- G= T oay Z(Aw)i (25)
mogeneity where its elastic moduli vanish, complete =1

explicit expressions for the equivalent eigenstrain havavhere

been obtained and tabulated below.

For the in-plane shear stres$ applied to the mul- AW = }f (Uicj) + 0ij )(U?i +uj;)dD
o : :

N

tiply flawed solid only: 2
1+ a)2C1102 —/ o) (W +u;)ds
8;2 — ( + a) 2116212 (17) D| (Gll nl)(ul + U])
a(l— f)(Cf - Chy) 1
0,,0 0\ 0
For the tensile stressy, applied to the multiply flawed - [5 /D ojjuj,; dD — /lDl (o5 i) uj ds}’

solid only:

. [CZ,(C11 + C12) — (3C11 — C12)C) |0, . . .
&1 = 1 f)(C2 2 )[2C2 —(CiitC1o)C ] with | D| denoting the boundary of the flawed material
117 ~12)1e12 117 1211 D. It is observed thahW represents the interaction
(18) energy between the loading and flaw extension forces.

(26)

. [(Ci1+4aCy1+ C12)CZ, — (14 28)(C11 + C12)CE |02,

ek, = , (19)
22 (1 - f)(CE, — CF,)[2CE, + (Cua + C12)Cui

0
" C120;

ely = . . (20) The energy release rate as defined in Equation 25 is par-
(1— f)[2C%, — (C11 + C12)Cu]

ticular convenient for calculation since the interaction
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energy can be expressed only in term of the appliedo the Griffith [1] criterion:
loads and the equivalent eigenstrajpas [10]

1 0 _*
—E/S;O'ijEji

where Zra;a, is the volume per unit thickness of an

elliptical flaw. where y denotes the surface energy density of the
Substitutinge; listed in Equations 17-21 into Equa- flawed material. Herein, the value pfis selected as

tion 25 with Equation 27 results in three modes of en-1 Gpa for numerical simulation. Substitutiaj given

ergy release rate explicitly. For Mode I: by Equations 17-21 into condition 25 leads to critical

N
AW = Y (AW + 2rayazy)i =0,

1
dx = _E(halaz)ai?gTi’ (27)
i-1

d
— 32
Sar (32)

stresses
4(ay + ap)Cpimo
G = (1( ! :“) (é)z “”00221) , (28)
o ¢ _ [@= fyap(CE - Ch)
021 = (33)
and for Mode II: 2(a1 + a)Cy1
G {(48.1 + a)(C11 + Clg)Cfl — [8a1C11 + @2(C11 + C12)] sz}nazoz (29)
= ,

(1~ 1)(CE ~ CB)[(Cur + CulCur — 2CF)

and for Mode III:

2 + ag)nazoé

G = (1— f)Cuq

(30)

Equations 28-30 are the closed forms of the energy
release rate foN elliptical flaws embedded in an in-
finite solid under distinct types of mechanical loading.
These forms are a function of the aspect ratio and the
volume fraction of flaws, the type of the loading, and
the material properties.

As an illustrated example to emphasize the physica
dimension of these closed forms for the energy releas:
rate, elliptical flaws in an iron are considered. The iron
is a cubic crystal material with the following material
properties:

energy release rate (10° J/m?)

0.05

<
(=)
K

g
=
st

o
o
[

0.01

0.0 0.1

0.5

Figure 1 Energy release rates against wittwhena; /a, = 100.

C11 = C22 = C33 = 242 Gpa
Css = Cs5 = Cep = 1465 Gpa
C1o =Cy3=Cy3 =112Gpa

(31)

25
Fig. 1 depicts the numerical demonstration for the clo- e G
sed forms of the energy release rates in Equa_ 20[ !
tions 28-30, wheré&s,, G, andG,;; are found to in- ‘:g * G
crease with the volume fractioh of the flaws when g 8 Gy
the aspect ratio of the flaay/a; = 100. HereG, and 3 15[ /'
G are almost the same and larger th@y) as thef g
increases. Fig. 2 exhibits that the energy release rate g Lot
linearly increase with respect to the extension oftheas £
pect ratio of the elliptical flaw at = 2%. These results Zf
reveal that the flaws are more difficult to be ruptured ® osf e
in Mode lll than other modes as the volume fraction or
the aspect ratio of the flaws increases. . ' . '
09, 20 40 60 80 100

5. Critical failure stresses
The critical stress foN flaws to be distended under dis-

tinct mechanical loading can be determined accordingigure 2 Energy release rates agaiasfa, when f = 2%.
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for Mode I, and

oe — 2(1— f)yax(Cf, — C%,)[(Cr1+ C12)Ca1 — 2CZ)] (34)
22 [821C11 + @(C11 + C12)][CZ, — 4(a1 + 82)(C11 + C12)CZ ]
for Mode I, and Fig. 3 displays the decreasing critical stresses as vol-

ume fractionf increases a; /a, = 100. Fig. 4 shows
\/2(1_ f)y2,Caa th.at the critical stresses are monotonou_sly decreased
Ogs= |———— (35)  with respect to the extension of aspect ratio of the flaws
28 + @ at f = 2%. Nevertheless;$; ando$, are nearly equal,
and the values of5; are always less than thosedaf;
for Mode IlI. o _ ando?, as the range of the aspect ratio or the volume
The numerical demonstration with the iron, whosefraction of flaws increases. These indicate that the flaws
eIaSUC constants are given in Equat|0n 31, fOI’ the Closegre easier to be ruptured in Mode | and Mode 1 than

forms of the critical stresses in Equations 33-35 is il-Mode 111 as the flaw volume fraction or the flaw aspect
lustrated in Figs 3—4. As clearly shown in these figures;atio increases.

the critical stresses are strongly dependent on the as-
pect ratioa; /a, and the volume fractiorf of the flaws.

6. Summary

This study presents the fracture criterion in a closed
form for an infinite anisotropic solid containing multi-
ply elliptical flaws separately subjected to three modes
of applied loading. The energy release rates are intro-
duced to quantitatively determine the flaws’ extension
force. In addition, the critical stresses are employed to
forecast the trade of the flaw propagation. The closed
forms for energy release rate and critical stresses indi-
cate that they are functions of the aspect ratio and the
volume fraction of the flaws, the modes of the loading,
and the material properties. According to our results
for an iron, energy release rates increase with the vol-
ume fraction of flaws, in whicks,, is less tharG, and

G, as the volume fractiorf of flaws increases; crit-
ical stresses decrease asincreases in whiclvs; is

critical stresses (GPa)

o o 02 o 04 os larger tharsg, ando$,. Numerical demonstration also
7 illustrates that the energy release rates linearly increase
with respect to the extension of the aspect ratio of flaws
Figure 3 Critical stresses againgtwhenay /a; = 100. at a fixed volume fraction, while critical stresses are

monotonously decreased. These reveal that the flaws in
an iron are more difficult to be ruptured in Mode Il
than other modes as the volume fraction or the aspect
ratio of flaw increases. Finally, it is noted that the for-
mulation presented in the present paper is applicable
not only to the flaws in a cubic crystal solid but also to
any elastic anisotropic elliptical flaw problems.
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